Upcoming Talks

Prof. Ginestra Bianconi, Queen Mary University of London

The dynamics of higher-order networks: the effect of topology and triadic interactions

October 31, 2022

Abstract: Higher-order networks capture the interactions among two or more nodes in complex systems ranging from the brain to chemical reaction networks. In this talk, Prof. Bianconi will show that higher-order interactions are responsible for new dynamical processes that cannot be observed in pairwise networks. She will cover how topology is key to defining the synchronization of topological signals, i.e. dynamical signals defined not only on nodes but also on links, triangles, and higher-dimensional simplices in simplicial complexes. Interesting topological synchronization dictated by the Dirac operator can lead to the spontaneous emergence of a rhythmic phase where the synchronization order parameter displays low frequency oscillations which might shed light on possible topological mechanisms for the emergence of brain rhythms. She will also reveal how triadic interactions can turn percolation into a fully-fledged dynamical process in which nodes can turn on and off intermittently in a periodic fashion or even chaotically leading to period doubling and a route to chaos of the percolation order parameter.

Ginestra Bianconi is a Professor of Applied Mathematics in the School of Mathematical Sciences of the Queen Mary University of London, and she is Alan Turing Fellow at the Alan Turing Institute. Currently, she is Chief Editor of JPhys Complexity, Editor of PloSOne, and Scientific Reports, and she is Associate Editor of Chaos, Solitons, and Fractals. Award: Network Science Fellowships by the NetSci Society. Her research activity on Statistical Mechanics and Network Science includes Network Theory and its interdisciplinary applications. She has formulated the Bianconi-Barabasi model that displays the Bose-Einstein condensation in complex networks. She has formulated the statistical mechanics of network ensembles and she has proven their non-equivalence. She has made important contributions on the study of critical phenomena on networks. In the last years, she has been focusing on multilayer networks, simplicial complexes, network geometry and topology, percolation, synchronization, and network control. She is the author of the books Multilayer Networks: Structure and Function (Oxford University Press, 2018), Higher-order Networks: An introduction to simplicial complexes (Cambridge University Press, 2021), and editor of Networks of Networks in Biology (Cambridge University Press, 2021).

Photo credits: https://twitter.com/netsci2020/status/1306125360761888768?s=20&t=4e5hotNaZK0WZ2FESrrANQ